Parabolic Kazhdan-Lusztig polynomials, plethysm and gereralized Hall-Littlewood functions for classical types

نویسنده

  • Cédric Lecouvey
چکیده

We use power sums plethysm operators to introduce H functions which interpolate between the Weyl characters and the Hall-Littlewood functions Q corresponding to classical Lie groups. The coefficients of these functions on the basis of Weyl characters are parabolic Kazhdan-Lusztig polynomials and thus, are nonnegative. We prove that they can be regarded as quantizations of branching coefficients obtained by restriction to certain Levi subgroups. TheH functions associated to linear groups coincide with the polynomials introduced by Lascoux Leclerc and Thibon in [7].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Kazhdan-Lusztig polynomials, plethysm and generalized Hall-Littlewood functions for classical types

We use power sums plethysm operators to introduce H functions which interpolate between the Weyl characters and the Hall-Littlewood functions Q corresponding to classical Lie groups. The coefficients of these functions on the basis of Weyl characters are parabolic Kazhdan-Lusztig polynomials and thus, by works of Kashiwara and Tanisaki, are nonnegative. We prove that they can be regarded as qua...

متن کامل

Littlewood-richardson Coeecients and Kazhdan-lusztig Polynomials

We show that the Littlewood-Richardson coeecients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for aane symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in 21] in terms of ribbon tableaux.

متن کامل

Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials

We show that the Littlewood-Richardson coefficients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for affine symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in [21] in terms of ribbon tableaux.

متن کامل

Twisted Incidence Algebras and Kazhdan-Lusztig-Stanley functions

We introduce a new multiplication in the incidence algebra of a partially ordered set, and study the resulting algebra. As an application of the properties of this algebra we obtain a combinatorial formula for the Kazhdan-Lusztig-Stanley functions of a poset. As special cases this yields new combinatorial formulas for the parabolic and inverse parabolic Kazhdan-Lusztig polyno-mials, for the gen...

متن کامل

Parabolic Kazhdan-lusztig Polynomials for Hermitian Symmetric Pairs

We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of q, and that they are combinatorial invariants.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006